为了寻找太古代具有重要地质意义的氧化剂来源,中国科学院广州地球化学研究所何宏平研究员团队基于前期发现的石英表面自由基与水反应产生氧气(O2)和过氧化氢(H2O2)等活性氧(ROS)的机制,选取了岛状、环状、链状、层状和架状结构的硅酸盐矿物,开展了太古代物理风化环境下矿物–水界面作用的模拟研究。研究发现,大多数硅酸盐矿物经机械磨蚀后均可产生ROS,架状结构矿物(长石和石英)中Si–O键均裂更容易形成自由基(SiO•和SiOO•),其ROS产量显著高于橄榄石、辉石等具低聚合度硅氧骨架的矿物(图1)。通过大数据汇编分析发现,在太古代时期,大陆地壳物理风化导致的ROS产量随地壳SiO2含量的升高和构造运动的增强而显著增加(图2)。
图1 硅酸盐矿物ROS产量与结构关系
图2 地球大陆演化过程中大陆地壳产生ROS能力的变化
研究团队提出,超级山脉的物理风化可构成中太古代的“产氧工厂”(图3)。当时大陆上的矿物机械化学产氧通量达到1.73×108~1.17×109 mol yr-1,并随着大陆地壳的生长和长英质化而渐进增加,这足以引发太古代局部氧化风化事件。值得注意的是,矿物机械化学氧化剂产量的时空变化本质上是地表环境对地球深部过程的响应,活性氧的氧化作用驱使大量营养元素迁移至太古代海洋,促进早期海洋生产力的兴盛,驱动岩石圈–生物圈的协同演化,加速了早期地球宜居性演变。
图3 太古代造山侵蚀过程产生ROS的示意图
该研究得到了国家杰出青年基金(No. 41825003),国家自然基金(No. 41921003,42202037,42202037)和中国博士后科学基金资助项目(2022M713164)的联合资助。研究成果于4月21日发表于《通讯-地球与环境》(Communications Earth & Environments)。
论文信息:Xiao Wu(吴逍),Jianxi Zhu(朱建喜),Hongping He(何宏平)*,Haiyang Xian(鲜海洋),Yiping Yang(杨宜坪),Lingya Ma(马灵涯),Xiaoliang Liang(梁晓亮),Xiaoju Lin(林枭举),Shan Li(李珊),Kurt O. Konhauser*,Yiliang Li(李一良)*, 2023. Geodynamic oxidation of Archean terrestrial surfaces. Communications Earth & Environments. DOI: 10.1038/s43247-023-00789-3.